Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pharmacol Res Perspect ; 11(1): e01036, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173415

ABSTRACT

ABBV-47D11 is a neutralizing monoclonal antibody that targets a mutationally conserved hydrophobic pocket distal to the ACE2 binding site of SARS-CoV-2. This first-in-human safety, pharmacokinetics, and antiviral pharmacodynamic assessment in patients with COVID-19 provide an initial evaluation of this antibody that may allow further development. This multicenter, randomized, double-blind, and placebo-controlled single ascending dose study of ABBV-47D11 (180, 600, or 2400 mg) as an intravenous infusion, was in hospitalized and non-hospitalized (confined) adults with mild to moderate COVID-19. Primary outcomes were grade 3 or higher study drug-related adverse events and infusion-related reactions. Secondary outcomes were pharmacokinetic parameters and concentration-time profiles to Day 29, immunogenicity (anti-drug antibodies), and antiviral activity (change in RT-PCR viral load) from baseline to Days 15 and 29. ABBV-47D11 single doses up to 2400 mg were safe and tolerated and no safety signals were identified. The pharmacokinetics of ABBV-47D11 were linear and showed dose-proportional increases in serum concentrations with ascending doses. The exploratory anti-SARS-CoV-2 activity revealed a reduction of viral load at and above the 600 mg dose of ABBV-47D11 regardless of patient demographics and baseline characteristics, however; because of the high inter-individual variability and small sample size a statistical significance was not reached. There is potential for anti-SARS-CoV-2 activity with ABBV-47D11 doses of 600 mg or higher, which could be evaluated in future clinical trials designed and powered to assess viral load reductions and clinical benefit.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents , Antibodies, Neutralizing
2.
Open Forum Infect Dis ; 9(5): ofac104, 2022 May.
Article in English | MEDLINE | ID: covidwho-1831305

ABSTRACT

Background: Few therapies are approved for hospitalized patients with severe coronavirus disease 2019 (COVID-19). Ibrutinib, a once-daily Bruton tyrosine kinase inhibitor, may mitigate COVID-19-induced lung damage by reducing inflammatory cytokines. The multicenter, randomized, double-blind phase 2 iNSPIRE study evaluated ibrutinib for prevention of respiratory failure in hospitalized patients with severe COVID-19. Methods: Adult patients with severe COVID-19 requiring hospitalization and supplemental oxygen but without respiratory failure were randomized 1:1 (stratified by remdesivir prescription) to ibrutinib 420 mg or placebo once daily for up to 28 days plus standard of care (SOC), including remdesivir and/or dexamethasone. Results: Forty-six patients were randomized to ibrutinib plus SOC (n = 22) or placebo plus SOC (n = 24). The primary endpoint (proportion of patients alive and without respiratory failure through day 28) was not met, with no statistically significant difference adjusting for remdesivir prescription (86% with ibrutinib plus SOC vs 79% with placebo plus SOC; adjusted difference, 5.8% [80% confidence interval, -9.2% to 20.4%]; P = .599). Secondary endpoints also showed no statistically significant improvement with ibrutinib plus SOC. Median treatment duration was 14 days for ibrutinib and placebo. Adverse events were similar with ibrutinib plus SOC vs placebo plus SOC (overall: 55% vs 50%; serious: 18% vs 13%) and were consistent with the known safety profile of ibrutinib. Conclusions: Addition of ibrutinib to SOC did not improve the proportion of patients alive and without respiratory failure through day 28 in hospitalized patients with severe COVID-19. Ibrutinib had a manageable safety profile, with similar safety to placebo. Clinical Trials Registration: NCT04375397.

3.
Contemp Clin Trials ; 119: 106758, 2022 08.
Article in English | MEDLINE | ID: covidwho-1773152

ABSTRACT

In clinical trials with the objective to evaluate the treatment effect on time to recovery, such as investigational trials on therapies for COVID-19 hospitalized patients, the patients may face a mortality risk that competes with the opportunity to recover (e.g., be discharged from the hospital). Therefore, an appropriate analytical strategy to account for death is particularly important due to its potential impact on the estimation of the treatment effect. To address this challenge, we conducted a thorough evaluation and comparison of nine survival analysis methods with different strategies to account for death, including standard survival analysis methods with different censoring strategies and competing risk analysis methods. We report results of a comprehensive simulation study that employed design parameters commonly seen in COVID-19 trials and case studies using reconstructed data from a published COVID-19 clinical trial. Our research results demonstrate that, when there is a moderate to large proportion of patients who died before observing their recovery, competing risk analyses and survival analyses with the strategy to censor death at the maximum follow-up timepoint would be able to better detect a treatment effect on recovery than the standard survival analysis that treat death as a non-informative censoring event. The aim of this research is to raise awareness of the importance of handling death appropriately in the time-to-recovery analysis when planning current and future COVID-19 treatment trials.


Subject(s)
COVID-19 Drug Treatment , Death , Computer Simulation , Humans , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL